

Danping Zou

dpzou@sjtu.edu.cn

 http://drone.sjtu.edu.cn/dpzou Lab of Navigation and Location-based Service Shanghai Jiao Tong University 2016, $27^{\text {th }}$ July, ROS Summer School @ECNU
What's SLAM

- SLAM :Simultaneous Localization And Mapping.

Constructing a map of an unknown environment while simultaneously keeping track of the robot's location.
-Autonomous navigation -motion planning

SLAM with different kinds of sensors

Visual SLAM

- Input sensor are video cameras
- build 3D map
- Estimate the self-pose of the camera
- both are processed in real time

1. A complementary to other sensors:

- GPS
- IMU
- Laser range finder

2. Works in GPS-denied environments

- Indoor
- Cave
- Mars, Moon

Other applications

- Motion capture in AR/VR

Development of Visual SLAM in recent ten years

Open source software for VisualSLAM

- PTAM(http://www.robots.ox.ac.uk/~gk/PTAM/)
- ORBSLAM(http://webdiis.unizar.es/~raulmur/orbslam/)
- MonoSLAM(http://webdiis.unizar.es/~jcivera/code/1p-ransac-ekf-monoslam.html)
- VisualSFM (http://ccwu.me/vsfm/)
- CoSLAM (https://github.com/danping/CoSLAM)

Outline

- Basic Theory
- Pinhole camera model
- Camera calibration
- Two camera geometry
- Build a visual SLAM system
- Structure-from-motion(SFM) approach:
- PTAM
- ORB SLAM
- CoLSAM
- Extended Kalman Filter approach:
- MonoSLAM
- StructSLAM

Multiple view geometry

第茿

Homogenous coordinates

- Homogenous representation
- Represent an n-dimensional vector by a $n+1$ dimensional coordinate

$$
\begin{aligned}
& \mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
\cdots \\
x_{n} \\
w
\end{array}\right)=\lambda \mathbf{x} \sim\left(\begin{array}{l}
x_{1} / w \\
x_{2} / w \\
\cdots \\
x_{n} / w
\end{array}\right) \\
& \text { Homogenous coordinate } \quad \text { Euclidean coordinate }
\end{aligned}
$$

- Can represent infinite points or lines

Homogenous coordinates

- 2D points and lines
- A point is represented by $\mathbf{x}=(x, y, 1)^{T}$
- A line is represented by $\quad \mathbf{l}=(a, b, c)^{T}$
- A line equation is $\mathbf{l}^{T} \mathbf{x}=0$

$$
\mathrm{l}=\mathrm{x}_{1} \times \mathrm{x}_{2}
$$

Line across two points
Here, ' X ' represents cross production

Homogenous coordinates

- 2D points and lines
- An infinite point is represented by $\mathbf{x}=(x, y, 0)^{T}$
- All infinite points are on the infinite line

$$
\mathbf{l}=(0,0,1)^{T}
$$

- 3D points and planes
- A point is represented by $\mathbf{x}=(x, y, z, w)^{T}$
- A plane is represented by $\Pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)^{T}$

$$
\left(\begin{array}{c}
\Pi_{1}^{T} \\
\Pi_{2}^{T} \\
\Pi_{3}^{T}
\end{array}\right) \mathbf{x}=0
$$

$$
\left(\begin{array}{l}
\mathbf{x}_{1}^{T} \\
\mathbf{x}_{2}^{T} \\
\mathbf{x}_{3}^{T}
\end{array}\right) \Pi=0
$$

Homogenous coordinates

- 2D points and lines
- An infinite point is represented by $\mathbf{x}=(x, y, 0)^{T}$
- All infinite points are on the infinite line

$$
\mathbf{l}=(0,0,1)^{T}
$$

- 3D points and planes
- A point is represented by $\mathbf{x}=(x, y, z, w)^{T}$
- A plane is represented by $\Pi=\left(\pi_{1}, \pi_{2}, \pi_{3}, \pi_{4}\right)^{T}$

$$
\left(\begin{array}{c}
\Pi_{1}^{T} \\
\Pi_{2}^{T} \\
\Pi_{3}^{T}
\end{array}\right) \mathbf{x}=0
$$

$$
\left(\begin{array}{l}
\mathbf{x}_{1}^{T} \\
\mathbf{x}_{2}^{T} \\
\mathbf{x}_{3}^{T}
\end{array}\right) \Pi=0
$$

Pinhole camera model

- A pinhole camera model is illustrated as the follows

$$
\mathbf{X}=\left(\begin{array}{l}
X \\
Y \\
Z \\
1
\end{array}\right) \quad \Rightarrow \quad \mathbf{x}=\left(\begin{array}{l}
f X / Z \\
f Y / Z \\
f
\end{array}\right)=\lambda\left(\begin{array}{l}
u \\
v \\
f
\end{array}\right)
$$

Pinhole camera model

- We have

$$
\begin{aligned}
& \left(\begin{array}{c}
u \\
v \\
f
\end{array}\right) \propto\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \text { image point } \quad\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \\
& 3 \times 4 \text { projection matrix }
\end{aligned}
$$

- Normalized image point will be then sensed by CCD or CMOS :
- Next step: Image plane -> Sensor frame

Pinhole camera model

- Intrinsic camera parameters:
- Image plane -> Sensor frame

$$
\begin{aligned}
& x=k_{x} u+x 0 \\
& y=k_{y} u+y 0
\end{aligned}
$$

where k_{x} and k_{y} are scaling factors, of which the units are pixels/length

Nikon D610 camera:

- Maximum image resolution:

$$
6016 \times 4016
$$

- CMOS size:
$35.9 \times 24 \mathrm{~mm}$
We have :

$$
\begin{aligned}
k_{x} & =0.168 \mathrm{pixel} / \mu \mathrm{m} \\
k_{y} & =0.167 \mathrm{pixel} / \mu \mathrm{m}
\end{aligned}
$$

Pinhole camera model

- Camera intrinsic matrix (or camera calibration matrix)

$$
\begin{array}{r}
\mathbf{x}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)=\left[\begin{array}{lll}
f k_{x} & 0 & x_{0} \\
0 & f k_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right] \frac{1}{f}\left(\begin{array}{l}
u \\
v \\
f
\end{array}\right) \\
=\left[\begin{array}{lll}
\alpha_{x} & 0 & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right) \\
=\mathbf{K}\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)
\end{array}
$$

Pinhole camera model

- \mathbf{K} is a 3×3 upper triangle matrix, called camera intrinsic matrix (or camera calibration matrix)

$$
\mathbf{K}=\left[\begin{array}{lll}
\alpha_{x} & 0 & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

- There are four parameters:
- Principle point $\left(x_{0}, y_{0}\right)$, which is point where the optical axis intersects the image plane
- Scaling factors α_{x}, α_{y} in image x and y directions
- In most cases the scaling factors are nearly the same, so sometimes only three parameters are used - two for principle point and one for scaling.

Image distortion

- Due to the imperfect imaging system, images are usually distorted.

No distortion

Barrel Distortion

Pincushion Distortion

$$
\binom{u_{d}}{v_{d}}=\left(1+D_{1} r^{2}+D_{2} r^{4}+D_{5} r^{6}\right)\binom{u}{v}+\binom{2 D_{3} u v+D_{4}\left(r^{2}+2 u^{2}\right)}{D_{3}\left(r^{2}+2 v^{2}\right)+2 D_{4} u v}
$$

Radial distortion
Tangential distortion

Distortion coefficients: $\quad D=\left[D_{1}, D_{2}, D_{3}, D_{4}, D_{5}\right]$

Remove the distortion

- Rectify the distorted image:
- For each pixel in the destination image (without distortion), find its corresponding pixel in the distorted image.
- Fill the color of the corresponding pixel in the distorted image into the current pixel.
- Repeat above steps until all pixels are filled.

Remove the distortion

- Compute the original coordinate from the distorted coordinate :

$$
(u, v) \leftarrow\left(u_{d}, v_{d}\right)
$$

- Directly solve (u, v) from $\left(u_{d}, v_{d}\right)$ is very difficult!

$$
\binom{u_{d}}{v_{d}}=\frac{\left(1+D_{1} r^{2}+D_{2} r^{4}+D_{5} r^{6}\right)}{\tau}\binom{u}{v}+\frac{\binom{2 D_{3} u v+D_{4}\left(r^{2}+2 u^{2}\right)}{D_{3}\left(r^{2}+2 v^{2}\right)+2 D_{4} u v}}{d \mathbf{x}}
$$

- We can solve it iteratively:
- Initially we let $\left(u_{1}, v_{1}\right) \leftarrow\left(u_{d}, v_{d}\right)$
- Repeat until convergence :
- Compute $\tau, d \mathbf{x}$ using $\left(u_{i-1}, v_{i-1}\right)$.
- We get $\left(u_{i}, v_{i}\right)$ by

Usually, convergence can be achieved in 3~5 iterations

$$
\binom{u_{i}}{v_{i}}=\left(\binom{u_{d}}{v_{d}}-d \mathbf{x}\right) / \tau
$$

Camera calibration

- Calibration using checkerboard pattern
- Use several snapshots of a checkerboard pattern to compute the intrinsic parameters.

Zhang, Zhengyou. "A flexible new technique for camera calibration." Pattern Analysis and Machine Intelligence, IEEE Transactions on 22.11 (2000): 1330-1334.

$$
\mathbf{K}=\left[\begin{array}{lll}
\alpha_{x} & 0 & x_{0} \\
0 & \alpha_{y} & y_{0} \\
0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{D}=\left[D_{1}, D_{2}, D_{3}, D_{4}, D_{5}\right]
$$

Two view geometry

- Two view geometry tries to answer the following questions.
- Given a image point in one view, where is its corresponding point in the other view?
- Epipolar constraint
- What is the relative pose between two views given a set of correspondences?
- Fundamental/Essential matrix estimation
- What is the 3D geometry of the scene?
- Triangulation

Two view geometry

- Epiploar constraint:
- Given a image point in the first view, how can we search its correspondence in the next view?
- Its correspondence lies in a line,
 which is named as 'epipolar line' of \mathbf{x}.
- The geometry determining the epiplolar line is 'epipolar geometry'
- The constraint that the correspondence of \mathbf{x} should lie in the epipolar line is the epipolar constraint.

Epiploar constraint

- The epipolar constraint is described mathematically as

$$
{\mathbf{x}^{\prime T} F \mathbf{x}=0 .}
$$

- Here F is the fundamental matrix
- $\mathbf{l}=F \mathbf{x}$ is the epipolar line of \mathbf{x}

Danping Zou @Shanghai Jiao Tong University

Epiploar constraint

- Epipolar constraint - Derivation

$$
E=[t]_{\times} R \text { is the essential matrix }
$$

Epiploar constraint

- Essential matrix and fundamental matrix

$$
\begin{aligned}
& \mathbf{x}^{\prime T} E \mathbf{x}=0 \\
& \mathbf{m}^{\prime T} K^{\prime-T} E K^{-1} \mathbf{m}=0 \quad\left(\mathbf{m}^{\prime}=K^{\prime} \mathbf{x}^{\prime}, \mathbf{m}=K \mathbf{x}\right) \\
& \mathbf{m}^{\prime T} F \mathbf{m}=0 \\
& F=K^{\prime-T} E K^{-1} \quad \text { Fundamental matrix }
\end{aligned}
$$

Fundamental matrix estimation

- Given a set of point correspondences $\left\{\mathbf{x}_{i} \leftrightarrow \mathrm{x}_{i}^{\prime}\right\}$, solve

$$
\mathbf{x}^{\prime T} \mathbf{F} \mathbf{x}=0
$$

- Fundamental matrix is a rank-2 matrix and has seven degree of freedom
- At least 7 points are required to solve the fundamental matrix, where each point provides one equation.
- Eight point algorithm
- Seven point algorithm

Fundamental matrix estimation

- Eight point algorithm
- For each correspondence $\mathrm{x} \leftrightarrow \mathrm{x}^{\prime}$, we have the equation

$$
\mathbf{x}^{\prime T} F \mathbf{x}=0
$$

which can be written as

$$
\begin{aligned}
& \text { vritten as } \\
& \left(x^{\prime} x, x^{\prime} y, x^{\prime}, y^{\prime} x, y^{\prime} y, y^{\prime}, x, y, 1\right)
\end{aligned}\left(\begin{array}{l}
f_{11} \\
f_{12} \\
f_{13} \\
f_{21} \\
f_{22} \\
f_{23} \\
f_{31} \\
f_{32} \\
f_{33}
\end{array}\right)=0
$$

where $\mathbf{f}=\left(f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right)^{\top}$ holds the entities of \boldsymbol{F}

Two view geometry

- The entries of fundamental matrix can be solved by stacking all equations together.

$$
\mathbf{A f}=0
$$

- Since \boldsymbol{F} is determined up to scale only, at least eight points are required to solve \boldsymbol{F}.
- The solution can also be obtained by SVD decomposition.

Least-squares solution

(i) Form equations $\mathrm{Af}=0$.
(ii) Take SVD : A $=U^{\prime} V^{\top}$.
(iii) Solution is last column of V (corresp : smallest singular value)
(iv) Minimizes $\|\mathrm{Af}\|$ subject to $\|\mathbf{f}\|=1$.

Fundamental matrix estimation

- Singularity correction
- The solution by 8 point algorithm does not satisfy the singularity condition.
- F is rank-2 matrix or mathematically, $\operatorname{det}(F)=0$
- SVD approximation
- Decompose F by SVD $F=U \Sigma V^{T}$
- Here $\Sigma=\operatorname{diag}(r, s, t)$.
- The SVD approximation of F is

$$
F^{\prime}=U \operatorname{diag}(r, s, 0) V^{T}
$$

F'is the 'closest'singular matrix to F in Frobenius norm!

Fundamental matrix estimation

- Seven point algorithm
- If we impose the singularity condition on the unknowns, we get another equation.
- So we can solve the fundamental matrix by 7 points
- Steps:
- 1 . Get the null space solution of $\mathbf{A f}=0$

$$
\mathbf{f}=\lambda \mathbf{f}_{0}+\mu \mathbf{f}_{1}
$$

- 2. Rewrite it into the matrix form

$$
\mathrm{F}=\lambda \mathrm{F}_{0}+\mu \mathrm{F}_{1}
$$

- 3. Condition $\operatorname{det}(F)=0$ gives a cubic equation of λ, μ
- 4. Solve λ, μ and get F

Essential matrix estimation

- Compute essential matrix
- Once the camera has been calibrated.
- Only five points are required to solve essential matrix since there is only five degree of freedom in essential matrix

$$
E=[t]_{\times} R
$$

- Nister' s five point algorithm

Nistér, David. "An efficient solution to the five-point relative pose problem."Pattern Analysis and Machine Intelligence, IEEE Transactions on 26.6 (2004): 756-770.

Triangulation

- Knowing P and P^{\prime}
- Knowing x and x^{\prime}
- Compute X

$$
\begin{aligned}
& \mathbf{x}=P \mathbf{X} \\
& \mathbf{x}^{\prime}=P^{\prime} \mathbf{X}
\end{aligned}
$$

Refinement

- Minimizing the re-projection errors $\quad\|x-f(P, X)\|^{2}+\left\|x^{\prime}-f\left(P^{\prime}, X\right)\right\|^{2}$ Here $f(P, X)=\left(\begin{array}{c}\frac{p_{1} x+p_{2} y+p_{3} z+p_{4}}{p_{9}+p_{5}+p_{0}+p_{1}+p_{1}+p_{12}} \\ p_{9} x+p_{10} y+p_{17}+p_{1} \\ p_{1}+p_{12}+p_{12}\end{array}\right)$. It is a nonlinear least
square problem and can be solved by Levenberg-Marquardt algorithm efficiently.

RANSAC algorithm

- RANdom Sample And Consensus

- Robust estimation under the presence of outliers

RANSAC algorithm

- Randomly select a small subset of correspondences and solve the Fundamental/Essential matrix
- Evaluate the error residuals for the rest of the correspondences. The Consensus set is the set of correspondences within the error threshold
- Repeat above steps and finally select solution that yields the largest consensus set.

A quick way to learn all about this

- Write a simple program to reconstruct 3D points from two snapshots. For example, use your phone.
- The pipeline
- 1. calibrate the camera intrinsic parameters
- 2. take two pictures by your phone
- 3. Match feature points (SIFT, SURF)
- 4. Use RANSAC algorithm to estimate the fundamental matrix and remove the outlier
- 5. use Nister' s code to estimate the essential matrix from the inlier corresponding points
- 6. extract the R and t from the essential matrix
- 7. triangulate the 3D points

Outline

- Basic Theory
- Pinhole camera model
- Camera calibration
- Two camera geometry
- Build a visual SLAM system
- Structure-from-motion(SFM) approach:
- PTAM
- ORB SLAM
- CoSLAM
- Extended Kalman Filter approach:
- MonoSLAM
- StructSLAM

A quick overview of a SFM system

- A typical pipeline of incremental structure-frommotion (one camera case)

Initialization

Pose estimation

Triangulation

A quick overview of a SFM system

- A typical pipeline of incremental structure-frommotion (one camera case)

Initialization

```
Pose estimation
```


Triangulation

Bundle adjustment

Existing systems

2007, PTAM

Klein, Georg, and David Murray. "Parallel tracking and mapping for small AR workspaces." Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on. IEEE, 2007.

2013, CoSLAM

Zou, Danping, and Ping Tan. "Coslam: Collaborative visual slam in dynamic environments." IEEE transactions on pattern analysis and machine intelligence 35.2 (2013): 354-366.

2015,ORB-SLAM
Mur-Artal, Raul, J. M. M. Montiel, and Juan D. Tardós. "Orb-slam: a versatile and accurate monocular slam system." IEEE Transactions on Robotics 31, no. 5 (2015): 1147-1163.

Single camera SLAM- overview

- Camera Tracking (Localization)
- Feature matching
- Pose estimation

Main thread

- Mapping
- Initialization
- Key frame insertion
- Bundle adjustment

Separated thread

Map initialization

- Map initialization
- Use two images to get the initial poses and generate seed map points

Map initialization

- Estimate the essential matrix (five point algorithm)

$$
\begin{aligned}
& \mathbf{x}^{\prime T} E \mathbf{x}=0 \\
& E=[t]_{\times} R \\
& \text { Step1:Estimate the essential matrix }
\end{aligned}
$$

Nistér, David. "An efficient solution to the five-point relative pose problem."Pattern
Analysis and Machine Intelligence, IEEE Transactions on 26.6 (2004): 756-770.

Map initialization

- Relative pose decomposition. As I explained previous there are four possible solutions:

Danping Zou @Shanghai Jiao Tong University

Map initialization

- Triangulation - generate 3D points

$$
\mathbf{x}=P \mathbf{X} \quad \mathbf{x}^{\prime}=P^{\prime} \mathbf{X}
$$

Pose estimation

Main thread
Separated thread

Pose estimation

- The problem:
- Given 3D points and their corresponding images, how do we compute the camera pose? (given that the camera is calibrated)

Pose estimation

- Denote 3D points by $\left\{\mathrm{M}_{i}\right\}$ and their corresponding images by $\left\{\mathbf{m}_{i}\right\}$.
- The re-projection error of a 3D point is defined as the distance between the image point and its projection.

Pose estimation

- Re-projection error:

$$
r_{i}(\theta)=\mathbf{m}_{i}-\operatorname{Proj}\left(\mathbf{M}_{i}, \theta\right)
$$

- We want find a pose that minimizes

$$
\theta^{*}=\arg \min _{\theta} \sum r_{i}^{2}(\theta)
$$

This is a standard non-linear least square problem, which can be solved by Levenberg-Marquardt algorithm.

Pose estimation

- How about if we get noisy correspondences?
- Feature matching is not always correct!

$$
\sum r_{\imath}^{2}(\theta)
$$

Pose estimation

- Another robust method : M-estimator

The M-estimators try to reduce the effect of outliers by replacing the squared residuals with another function.

$$
\sum r_{i}^{2}(\theta) \Rightarrow \sum \rho\left(r_{i}(\theta)\right)
$$

L2

L1

Huber

Pose estimation

- Least square
V.S. M-estimator

$$
\begin{array}{rrc}
\sum r_{i}^{2}(\theta+\Delta \theta) & \leftrightarrow & \sum \rho\left(r_{i}(\theta+\Delta \theta)\right) \\
\sum r_{i} \frac{\partial r_{i}}{\partial \Delta \theta}=0 & \sum \rho^{\prime}\left(r_{i}\right) \frac{\partial r_{i}}{\partial \Delta \theta}=0 \\
& \sum \frac{\rho^{\prime}\left(r_{i}\right)}{r_{i}} r_{i} \frac{\partial r_{i}}{\partial \Delta \theta}=0 \\
& w\left(r_{i}\right)
\end{array}
$$

This is a weighted least square problem!

M-estimator

- Reweighted least square algorithm:
- Solve the weighted least square problem using initial weights (1s)

M-estimator tutorial by Zhengyou Zhang
http://research.microsoft.com/en-
us/um/people/zhang/INRIA/Publis/Tutorial-Estim/node24.htmI

Key frame selection

Main thread
Separated thread

Key frame selection

- What is key frame ?
- An structure storing:
- current camera pose
- current 3D points and their image correspondences

Question: Why not select all video frames as key frames?

Because it is not efficient (computation time + memory request)

- two many points
- tw0 many camera poses

Key frame selection

- Some strategy to select key frame
- A sufficient moving distance
- Good quality of image
- Maintain the number of features tracked

Bundle adjustment

Main thread
Separated thread

Bundle adjustment

- What is bundle adjustment?
- Bundle adjustment is to minimize re-projection errors in all views with respect to all 3D points and all camera poses

$$
\min \sum_{i} \sum_{j}\left(\mathbf{m}_{i j}-\operatorname{Proj}\left(\theta_{i}, \mathbf{M}_{j}\right)\right)^{2}
$$

- This is still a non-linear least square problem

$$
\min \sum_{i} \sum_{j} r_{i j}(\mathbf{x})^{2}
$$

\mathbf{x} is a vector containing all camera poses and 3D points

```
Software
sba: http://users.ics.forth.gr/~lourakis/sba/
mcba: http://grail.cs.washington.edu/projects/mcba/
```


Bundle adjustment

- Bundle adjustment with all parameters involved costs a lot of time.
- A alternative solution is selecting only a subset of parameters to optimize. This approach is so called local bundle adjustment.
…...................

Keyframes	$2-49$	$50-99$	$100-149$
Local Bundle Adjustment	170 ms	270 ms	440 ms
Global Bundle Adjustment	380 ms	1.7 s	6.9 s

Feature matching

- PTAM : Fast corner (PTAM) \&ZNCC matching
- ORB-SLAM : ORB feature \& ORB matching
- CoSLAM :
- Intra-camera : Harris corner \& KLT tracking
- Inter-camera: ZNCC matching

ORB-SLAM

A extension from PTAM

- Robust initialization
- Loop closing

TRACKING

CoSLAM

- Visual SLAM system for robot swarms

Collaborative localization \& mapping

- Inter/intra-camera pose estimation
- Inter/intra-camera mapping
- Identification of moving points
- Spanning tree for dividing camera into groups
- Collaboration in group

CoSLAM

top view
zoomed view

CoSLAM - courtyard example

CoSLAM - 12 cameras in a room

Outline

- Basic Theory
- Pinhole camera model
- Camera calibration
- Two camera geometry
- Build a visual SLAM system
- Structure-from-motion(SFM) approach:
- PTAM
- ORB SLAM
- CoSLAM
- Extended Kalman Filter approach:
- MonoSLAM
- StructSLAM

Extended Kalman Filter approach

MonoSLAM,2003

Davison, Andrew J., Ian D. Reid, Nicholas D. Molton, and Olivier Stasse. "MonoSLAM: Real-time single camera SLAM." IEEE transactions on pattern analysis and machine intelligence 29, no. 6 (2007): 10521067.

StructSLAM, 2015

Zhou, Huizhong, Danping Zou, Ling Pei, Rendong Ying, Peilin Liu, and Wenxian Yu. "StructSLAM: Visual SLAM With Building Structure Lines." Vehicular Technology, IEEE Transactions on 64, no. 4 (2015): 1364-1375.

Kalman filter

- What is Kalman filter?
- A Kalman filter is an estimator - i.e. infers parameters of interest from indirect, inaccurate and uncertain observations
- It is recursive so that new measurements can be processed as they arrive.
- It is optimal - i.e. if the noise is Gaussian, Kalman filter minimizes the mean square error of the estimated parameters.

Rudolf Emil Kálmán, co-inventor and developer of the Kalman filter.

Kalman filter

- Why is Kalman filter so popular?
- Good results in practice due to optimality and structure.
- Convenient form for online real time processing.
- Easy to formulate and implement given a basic understanding.
- Measurement equations need not be inverted.

Kalman filter

- Overview

Prediction

Kalman filter

- Linear dynamic model

$$
x_{t}=F_{t} x_{t-1}+B_{t} u_{t}+w_{t}
$$

- F_{t} is the state transition model which is applied to the previous state x_{t-1};
- B_{t} is the control-input model which is applied to the control vector u_{t};
- w_{t} is the process noise which is assumed to be drawn from a zero mean multivariate normal distribution with covariance Q_{t}.

$$
w_{t} \sim \mathcal{N}\left(0, Q_{t}\right)
$$

Kalman filter

- Observation model (measurement model)

$$
z_{t}=H_{t} x_{t}+n_{t}
$$

- H_{t} is the observation model which maps the true state space into the observed space.
- n_{t} is the observation noise which is assumed to be zero mean Gaussian white noise with covariance R_{t}

$$
n_{t} \sim \mathcal{N}\left(0, R_{t}\right)
$$

Kalman filter

- At each time step, Kalman filter try to compute both the state estimation and the state covariance

Kalman filter

- Prediction
- State prediction - use the dynamic model to predict the state in the next time step:

$$
x_{t \mid t-1}=F_{t} x_{t-1}+B_{t} u_{t}
$$

- Uncertainty of prediction - propagate the covariance

$$
P_{t \mid t-1}=F_{t} P_{t-1} F_{t}^{T}+Q_{t}
$$

Kalman filter

- Correction/Update
- Compute innovation (measurement residual)

$$
y_{t}=z_{t}-H_{t} x_{t \mid t-1}
$$

- Get innovation covariance

$$
S_{t}=H_{t} P_{t \mid t-1} H_{t}^{T}+R_{t}
$$

Kalman filter

- Correction/Update
- Compute Kalman Gain

$$
K_{t}=P_{t \mid t-1} H_{t}^{T} S_{t}^{-1}
$$

- Update state estimate

$$
x_{t}=x_{t \mid t-1}+K_{t} y_{t}
$$

- Update state covariance

$$
P_{t}=\left(I-K_{t} H_{t}\right) P_{t \mid t-1}
$$

Extended Kalman filter

- Nonlinear dynamic model
- Nonlinear observation model

$$
\begin{aligned}
& x_{t}=f\left(x_{t-1}, u_{t}\right)+w_{t} \\
& z_{t}=h\left(x_{t}\right)+v_{t}
\end{aligned}
$$

Prediction

$$
\begin{aligned}
x_{t \mid t-1} & =f\left(x_{t-1}, u_{t}\right) \\
P_{t \mid t-1} & =F_{t} P_{t-1} F_{t}^{T}+Q_{t}
\end{aligned}
$$

$$
F_{t}=\left.\frac{\partial f}{\partial x}\right|_{x_{t}, u_{t}}
$$

Observation

$$
\begin{aligned}
y_{t} & =z_{t}-h\left(x_{t \mid t-1}\right) \\
S_{t} & =H_{t} P_{t \mid t-1} H_{t}^{T}+R_{t}
\end{aligned}
$$

$$
H_{t}=\left.\frac{\partial h}{\partial x}\right|_{x_{t}}
$$

Extended Kalman Filter approach

- EKF VSLAM tries to estimate a state variable that contains current robot state(orientation, position, velocity) and all landmarks .

$$
\mathbf{x}=\left[\begin{array}{c}
\mathcal{R} \\
\mathcal{M}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{R} \\
\mathcal{L}_{1} \\
\vdots \\
\mathcal{L}_{n}
\end{array}\right] \longrightarrow \text { Landmarks (points, lines) }
$$

This is also called map

$$
\mathbf{P}=\left[\begin{array}{cc}
\mathbf{P}_{\mathcal{R} \mathcal{R}} & \mathbf{P}_{\mathcal{R M}} \\
\mathbf{P}_{\mathcal{M R}} & \mathbf{P}_{\mathcal{M M}}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{P}_{\mathcal{R} \mathcal{R}} & \mathbf{P}_{\mathcal{R} \mathcal{L}_{1}} & \cdots & \mathbf{P}_{\mathcal{R} \mathcal{L}_{n}} \\
\mathbf{P}_{\mathcal{L}_{1} \mathcal{R}} & \mathbf{P}_{\mathcal{L}_{1} \mathcal{L}_{1}} & \cdots & \mathbf{P}_{\mathcal{L}_{1} \mathcal{L}_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{P}_{\mathcal{L}_{n} \mathcal{R}} & \mathbf{P}_{\mathcal{L}_{n} \mathcal{L}_{1}} & \cdots & \mathbf{P}_{\mathcal{L}_{n} \mathcal{L}_{n}}
\end{array}\right]
$$

Extended Kalman Filter approach

- The workflow of a typical EKF vSLAM system.

- Initialize the state variable and the covariance

Extended Kalman Filter approach

- The workflow of a typical EKF vSLAM system.

- Predict the state and propagate the covariance

$$
\begin{aligned}
\overline{\mathbf{x}} & \leftarrow f(\overline{\mathbf{x}}, \mathbf{u}, 0) \\
\mathbf{P} & \leftarrow \mathbf{F}_{\mathbf{x}} \mathbf{P F}_{\mathbf{x}}^{\top}+\mathbf{F}_{\mathbf{n}} \mathbf{N F}_{\mathbf{n}}^{\top}
\end{aligned}
$$

Extended Kalman Filter approach

- The workflow of a typical EKF vSLAM system.

- Find the corresponding features of the landmarks in the image

Extended Kalman Filter approach

- Compute Kalman Gain according to the observation model and use it to update the state.

Map initialization

Motion prediction

Data association

Update the map

Remove old landmarks

Extended Kalman Filter approach

- The workflow of a typical EKF vSLAM system.

- To limit the dimension of the map without growing to a very large value.

StructSLAM

- Basic idea: Most man-made scenes exhibit strong regularity in structures, especially the indoor spaces.
- This regularity can be simply described as
'Manhattan world'

- Perpendicular surfaces
- Have several dominant directions

StructSLAM

- A new kind of line features named as Structure Lines

- Structure Lines here are those lines who are aligned with x, y, z axes.
- Motivations:
- Structure lines encode the global orientation information in the image
- Lines are better landmarks in texture-less scenes (like many indoor scenes with only white walls) than points.

StructSLAM: Visual SLAM with Building Structure Lines

Hui Zhong Zhou, Danping Zou et al.
Shanghai Key Laboratory of Navigation and Location Based Services
Shanghai Jiao Tong University
Apirl, 2014
you have Questions We have Answers

